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5a. Current flowing through a volume
In the previous analysis we considered a thin conductive wire where the moving charges
were assumed to have a constant linear charge density. Now, let us consider the volume
effect as in figure 4.10. The electrical current I inside the volume consists of a collection of
charges, with charge density N charges per unit volume, that move with the same velocity 𝑣
along the wire that has a cross sectional area . Hence the volume of the segment of∆𝑆
length dl in figure 4.10  is . The force exerted on each charge inside is∆𝑉 = ∆𝑆 𝑑𝑙 ∆𝑉

. The total force on the𝐹
𝑗

= 𝑞
𝑗
𝑣

𝑗
× 𝐵

segment is summation of all the forces
inside the segment

(5.1)𝑑𝐹 =
𝑗=1

𝑛

∑ 𝐹
𝑗

Where n is the total number of charges
inside , which is . If all the∆𝑉 𝑛 = 𝑁∆𝑉
charges have the same amplitude and
velocity then

(5.2a)𝑑𝐹 =
𝑗=1

𝑁∆𝑉

∑ 𝑞 𝑣 × 𝐵  

(5.2b)    = (𝑁∆𝑉) 𝑞𝑣 × 𝐵( )  

We can arrange equation 5.2b as

(5.3)𝑑𝐹 = 𝑁𝑞𝑣( ) × 𝐵∆𝑉 Figure 5.1

So what is that term in equation 5.3?𝑁𝑞𝑣( )

Current density
Let us zoom on the wire in figure 5.1 and examine the flow of charges in time. If we still
assume that all charges are moving at same velocity along the wire axis, then we could state
that within a time duration dt, all charges in a volume will cross the surface S1∆𝑉 = ∆𝑆 𝑣 𝑑𝑡
as shown in figure 5.2. The total charge that flows through the surface within time t is then

(5.4)𝑑𝑄 = 𝑁 ∆𝑉𝑞 = 𝑁 ∆𝑆 𝑣 𝑑𝑡( ) 𝑞 

The current that follows can be approximated as

(5.5)𝐼 = 𝑑𝑄
𝑑𝑡 = 𝑁 ∆𝑆 𝑣  𝑞 

The amount of current that flows through a unit area is known as the current density and it
is defined as

(5.6)𝑗 = 𝐼
∆𝑆 = 𝑁 𝑣  𝑞 
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and that is exactly the term in parentheses
in equation 5.3. The current density as a
vector has the same direction as the current
and hence equation 5.6 can be written in a
vector form as

(5.7)𝑗 = 𝑁 𝑣  𝑞 

And the magnetic force on the charges
within the volume is∆𝑉

(5.8)𝑑𝐹 = 𝑗 × 𝐵∆𝑉

We know that , then∆𝑉 = ∆𝑆 𝑑𝑙

(5.9)𝑑𝐹 = ∆𝑆 𝑗 × 𝐵𝑑𝑙 = 𝐼 × 𝐵𝑑𝑙

The force per unit length is then

(5.10)𝑑𝐹
𝑑𝑙 = 𝐼 × 𝐵

Figure 5.2. Charges flowing through a
surface from a volume during∆𝑆 ∆𝑉 = 𝑣𝑡 ∆𝑆
a time t.

Current flow through arbitrary surface
For the case of a current flowing through a cylindrical shape wire with a cross sectional area

, the relation between the current and the current density is simply . That was due∆𝑆 𝐼 = 𝑗∆𝑆
to the fact that the current density is uniform and that it flows normal to the cross section. Let
us consider now a case where the wire is cut at angle as in figure 5.3.θ

For the scenario in figure 5.3, the current
that flows through the tilted edge is exactly
the same current that flows through a
normal surface with a reduced area as
shown by the dashed lines in the figure. In
this case, we can write the total current as

(5.11)𝐼 = 𝑗∆𝑆 𝑐𝑜𝑠θ

The above equation can be written in terms
of vector operation as

(5.12)𝐼 = 𝑗. 𝑛 ∆𝑆 𝑒
𝑗

Figure 5.3. Side view of a current flowing in
wire with an edge that is cut at an angle.

In equation 5.12, is a unit vector normal to the surface and is a unit vector along the𝑛 ∆𝑆 𝑒
𝑗

direction of flow of the current density. The dot product produces the cosine𝑗. 𝑛 =  𝑗| | 𝑐𝑜𝑠θ
term. Hence , which is the same expression in equation𝑗. 𝑛 ∆𝑆 𝑒

𝑗
= 𝑗| | 𝑐𝑜𝑠θ∆𝑆 𝑒

𝑗
= 𝑗∆𝑆 𝑐𝑜𝑠θ 

5.11. Using this approach, an arbitrary surface S can be divided into small surface elements
dS, as shown in figure 5.4, through each an elementary current dI flows.

________________________________________________________________________
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The amplitude of the elementary current is

(5.13)𝑑𝐼 = 𝑗. 𝑛 𝑑𝑠

where is a unit vector normal to the𝑛
elementary surface area ds. The total
current is then calculated by integrating 𝑑𝐼
over the surface S

(5.14)𝐼 =
𝑆
∫ 𝑗. 𝑛 𝑑𝑠

Figure 5.4. Breaking an arbitrary closed
surface S into elementary surfaces each
with a different normal unit vector.

Conservation of charges
We know from equation 5.5 that the current is the rate of change of charges per unit time

. Notice that a negative sign is introduced here. That is due to the fact that when the𝐼 =− 𝑑𝑄
𝑑𝑡

current is flowing out the closed surface, the total charge is expected to reduce and hene the
rate of change of Q with time is negative. Hence, a negative sign is introduced in order to
produce a positive current. The total charge inside the closed surface S can be expressed by
a volume integration over the charge density .ρ

(5.15)𝐼 =− 𝑑𝑄
𝑑𝑡 =− 𝑑

𝑑𝑡
𝑉
∫  ρ𝑑𝑉 =−

𝑉
∫  𝑑ρ

𝑑𝑡 𝑑𝑉

Replacing the current with the expression 5.14.

(5.16)
𝑆
∫  𝑗. 𝑛 𝑑𝑠 =−

𝑉
∫  𝑑ρ

𝑑𝑡 𝑑𝑉

This is known as the conservation of
charges. Its states that the total amount
of electric charge in a system does not
change with time. So, the charges
change when there is a current flowing
in or outside the system which is the
closed surface in our case. Let us now
follow a similar approach in unit three to find
a differential expression for equation 5.16.
Consider an infinitesimal volume

as shown in figure 5.4. The𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧
volume has six faces and hence the total
surface area is composed of six surfaces
with six normal unit vectors as listed in table
5.1. The dot product of the current density
and the normal vector at each surface is
listed in the table. Notice that the current
density in general varies in space and

Figure 5.5. Infinitesimal volume, dV inside
a closed surface ds with six surfaces.
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hence the position dependency is added for each dot product to indicate the location of the
surface plane. For instance, if the current density at a point at surface 1 is , then the𝑗(𝑥, 𝑦, 𝑧)
density at an equivalent point at surface 3 is as surface 3 is at a plane that is𝑗(𝑥, 𝑦, 𝑧 − 𝑑𝑧)
separated from surface 1 by dz.

Table 5.1. Surfaces of dV

Surface 𝑛 𝑑𝑠 𝑗 · 𝑛 𝑑𝑠

1 𝑧 𝑑𝑥𝑑𝑦 𝑗
𝑧
(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦

2 𝑦 𝑑𝑥𝑑𝑧 𝑗
𝑦
(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑧

3 − 𝑧 𝑑𝑥𝑑𝑦 − 𝑗
𝑧
(𝑥, 𝑦, 𝑧 − 𝑑𝑧)𝑑𝑥𝑑𝑦

4 − 𝑦 𝑑𝑥𝑑𝑧 − 𝑗
𝑦
(𝑥, 𝑦 − 𝑑𝑦, 𝑧)𝑑𝑥𝑑𝑧

5 𝑥 𝑑𝑦𝑑𝑧 𝑗
𝑥
(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧

6 − 𝑥 𝑑𝑦𝑑𝑧 − 𝑗
𝑥
(𝑥 − 𝑑𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦

The total dot product is then
𝑗. 𝑛 𝑑𝑠 = 𝑗

𝑥
(𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧 − 𝑗

𝑥
(𝑥 − 𝑑𝑥, 𝑦, 𝑧)𝑑𝑦𝑑𝑧 +

                                 𝑗
𝑦
(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑧 − 𝑗

𝑦
(𝑥, 𝑦 − 𝑑𝑦, 𝑧)𝑑𝑥𝑑𝑧 +

(5.17)                                𝑗
𝑧
(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦 − 𝑗

𝑧
(𝑥, 𝑦, 𝑧 − 𝑑𝑧)𝑑𝑥𝑑𝑦

The expression in 5.17 can be simplified as

𝑗. 𝑛 𝑑𝑠 =
𝑗

𝑥
(𝑥,𝑦,𝑧)−𝑗

𝑥
(𝑥−𝑑𝑥,𝑦,𝑧)

𝑑𝑥 𝑑𝑥𝑑𝑦𝑑𝑧 +

                 
𝑗

𝑦
(𝑥,𝑦,𝑧)−𝑗

𝑦
(𝑥,𝑦−𝑑𝑦,𝑧)

𝑑𝑦 𝑑𝑥𝑑𝑦𝑑𝑧 +

(5.18)                  
𝑗

𝑧
(𝑥,𝑦,𝑧)−𝑗

𝑧
(𝑥,𝑦,𝑧−𝑑𝑧)

𝑑𝑧 𝑑𝑥𝑑𝑦𝑑𝑧

Notice that the term is a valid approximation of the derivative of the current
𝑗

𝑥
(𝑥,𝑦,𝑧)−𝑗

𝑥
(𝑥−𝑑𝑥,𝑦,𝑧)

𝑑𝑥

density with respect to x when dx is very small, or . Hence, the
𝑑𝑗

𝑥

𝑑𝑥 ≈
𝑗

𝑥
(𝑥,𝑦,𝑧)−𝑗

𝑥
(𝑥−𝑑𝑥,𝑦,𝑧)

𝑑𝑥
expression in 5.18 becomes

(5.19)𝑗. 𝑛 𝑑𝑠 =
𝑑𝑗

𝑥

𝑑𝑥 +
𝑑𝑗

𝑦

𝑑𝑦 +
𝑑𝑗

𝑧

𝑑𝑧( )𝑑𝑥𝑑𝑦𝑑𝑧

We know from before that and , then∇ · 𝑗 =
𝑑𝑗

𝑥

𝑑𝑥 +
𝑑𝑗

𝑦

𝑑𝑦 +
𝑑𝑗

𝑧

𝑑𝑧 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧

(5.20)𝑗. 𝑛 𝑑𝑠 = ∇ · 𝑗 𝑑𝑉

The total current can now be obtained by integrative over the volume

________________________________________________________________________
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(5.21)
𝑆
∫  𝑗. 𝑛 𝑑𝑠 =

𝑉
∫ ∇ · 𝑗 𝑑𝑉 =−

𝑉
∫  𝑑ρ

𝑑𝑡 𝑑𝑉

The surface integral over S is now transferred to volume integration. We can then equate the
terms inside the integration as follows

(5.22)∇ · 𝑗 =− 𝑑ρ
𝑑𝑡

This is another way to write the conservation of charges where the change of the charge
density is due to increase or decrease in the current flow through the system.

5b. Steady current
When the current is not varying with time, we commonly refer to it as steady current or DC
current. This is the case of magnetostatics limit.

Gauss’s law

A steady current that flows through a wire
generates a magnetic field as in figure 5.6.
Let us consider a closed cylindrical surface
as shown by the dashed lines in the figure.
In this configuration, the magnetic field
flows inward normal to S1 and outwards
normal to S2. The field lines are parallel to
S3. Hence, we can write the following
relation

(5.23)∫
𝑆
∫ 𝐵 · 𝑛 𝑑𝑠 = 𝐵𝑆

1
− 𝐵𝑆

2
+ 0

For the cylindrical surface, both S1 and S2

are equal and hence

(5.24)∫
𝑆
∫ 𝐵 · 𝑛 𝑑𝑠 = 0 Figure 5.6. Gauss law for magnetism

The expression in 5.24 is known as Gauss's law for magnetism. We can write equation
5.24 in the differential form as we did in equation 5.22 as

(5.25)∇ · 𝐵 = 0

________________________________________________________________________
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Oersted-Ampere’s law
The magnetic field produced by a steady current I is estimated from Biot-Savart law as in
equation 4.22

(5.26)𝐵 =
µ

𝑜
𝐼

2π𝑅  θ

Performing an integration along a loop of radius R we obtain

(5.27)
𝑙
∮ 𝐵. 𝑑𝑙 =

θ=0

2π

∫
µ

𝑜
𝐼

2π𝑅  𝑅𝑑θ

For a steady or DC current, the integration above becomes

(5.28)
𝑙
∮ 𝐵. 𝑑𝑙 = µ

𝑜
𝐼

This is known as Oersted’s circuital law or Ampere’s circuital law for steady current.
The law states the following rules regarding magnetic field and current in straight wires:

● The magnetic field lines encircle the current-carrying wire (along direction).θ
● The magnetic field lines lie in a plane perpendicular to the wire (The current is along

and magnetic field in the x-y plane).𝑧
● If the direction of the current is reversed, the direction of the magnetic field reverses.
● The strength of the field is directly proportional to the magnitude of the current.The

strength of the field at any point is inversely proportional to the distance of the point
from the wire.

These rules clearly describe the expression in equation 5.26 that is driven for a magnetic
field produced by a steady current flowing in the positive z-direction.

If we express the current in terms of current density as in equation 5.14, equation 5.28 is
expanded to

(5.29)
𝑙
∮ 𝐵. 𝑑𝑙 = µ

𝑜
∫

𝑆
∫ 𝑗. 𝑛 𝑑𝑠

Using the relation in equation 3.31 we can write the line integral as

(5.30)
𝑙
∮ 𝐵. 𝑑𝑙 = ∫

𝑆
∫ ∇ × 𝐵. 𝑛 𝑑𝑠

Comparing equations 5.30 and 5.29, we can write

(5.31)∇ × 𝐵 = µ
𝑜
𝑗 

This is the differential form of Oersted-Ampere’s law. In the following text we will be referring
to this law as Ampere’s law for short. It reads that the curls of the magnetic field equals the
current density multiplied by the vacuum permeability. This is clearly presented where the
magnetic field curls in a circular path around the current flowing in a straight wire.

________________________________________________________________________
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Magnetic field in a coil
It is time now to benefit from the simplicity of Ampere’s law to calculate the magnetic field
produced by a current flowing in a more complicated geometry. Here, we consider a coil that
is winded in a solonidal form as shown in figure 5.7.

Notice that in the figure, the
direction of the magnetic field
follows the right hand rule where
the current circulates with the four
fingers and the field is along the
direction of the thumb.

Let us now select a rectangular
path that has a width L as shown𝑙
by the dashed lines in the figure.
From Ampere’s law in equation
5.28 we know that the integration of
the dot product of the magnetic
field and the path equals the total𝑙
current that flows the area S. So,
what is the total current that flows
through S?Figure 5.7. Magnetic field generated by a steady

current flowing in a coil that forms a solenoid path.

We know that the current is flowing in multiple loops formed by the coil. Hence, everytime
the coil intersects the surface S, there is a current of amplitude I is flowing through. Hence, if
the coil crosses the surface N times, the total current that flows through the surface is then

. we can now write Ampere’s equation as𝐼
𝑡𝑜𝑡𝑎𝑙

= 𝑁𝐼

(5.32)
𝑙
∮ 𝐵. 𝑑𝑙 = µ

𝑜
𝐼

𝑡𝑜𝑡𝑎𝑙
= µ

𝑜
𝑁𝐼

For the left side of the equation above, we can observe from the figure that the magnetic
field is almost perpendicular to the two vertical sides of the path. Hence, the dot product
between the field and along these two sides is negligible. The field is however almost𝑑𝑙
parallel to the two horizontal sides of the path and hence

(5.33)
𝑙
∮ 𝐵. 𝑑𝑙 = 𝐵𝐿 + 𝐵

𝑓𝑎𝑟
𝐿

Where is the magnetic field at the far side of the path. We know from Biot-Savart law𝐵
𝑓𝑎𝑟

that the field is inverse proportional to the distance from the loop. So, if we select the length
of the path to be large enough then the magnitude of becomes negligible and we can𝐵

𝑓𝑎𝑟
state that

(5.34)𝐵𝐿 = µ
𝑜
𝑁𝐼 → 𝐵 = µ

𝑜
𝑛𝐼

where is the number of loops per unit length.𝑛 = 𝑁/𝐿

________________________________________________________________________
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Summary of magnetostatic limit

The following table summarizes the main equations that govern the behavior of moving
charges in magnetostatics limit

Table 5.2. Summary of the main laws in magnetostatics limit

Law equation Other possible form

Lorentz force/
electromagnetic force

𝐹 = 𝑞 𝐸 + 𝑣 × 𝐵( )
Biot-Savart law

𝐵 =  
𝑙
∮

µ
𝑜
𝐼

4π𝑟2 𝑙 × 𝑟( )𝑑𝑙

Ampere’s force law 𝑑𝐹
𝐵

𝑑𝑙 =  µ
𝑜
𝐼

1
𝐼

2
/2π𝑅

Conservation of charges ∇ · 𝑗 =− 𝑑ρ
𝑑𝑡

𝑆
∫  𝑗. 𝑛 𝑑𝑠 =−

𝑉
∫  𝑑ρ

𝑑𝑡 𝑑𝑉

Gauss’s law of magnetism ∇ · 𝐵 = 0
∫

𝑆
∫ 𝐵 · 𝑛 𝑑𝑠 = 0

Oersted-Ampere's law ∇ × 𝐵 = µ
𝑜
𝑗

𝑙
∮ 𝐵. 𝑑𝑙 = µ

𝑜
𝐼

𝑙
∮ 𝐵. 𝑑𝑙 = µ

𝑜
∫

𝑆
∫ 𝑗. 𝑛 𝑑𝑠

5.c. Magnetic dipole
In unit four, we discussed the magnetic field produced by a current loop using Biot-Savart
law as presented in equations 4.30. Solving such integrals typically requires a numerical
approach. However, one could obtain a simple solution for specific cases.

Magnetic moment
One case is to assume that the loop radius R is very small and the observation point is
located far from the loop as in figure 5.8. In this case, and the expression for in𝑟

𝑝
≫ 𝑅 1/𝑟3

equations 4.30 can be simplified using Taylor expansion as

(5.35)1/𝑟3 = 1

𝑅2+𝑟
𝑝
2−2𝑅𝑥

𝑝
𝑐𝑜𝑠θ−2𝑅𝑦

𝑝
𝑠𝑖𝑛θ( )3/2 ≈ 1

𝑟
𝑝
3 1 + 3𝑅 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( )( )

Using this expansion, the integrations in 4.30a for instance becomes

________________________________________________________________________
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(5.36)𝐵
𝑥

≈
µ

𝑜
𝐼 𝑅𝑧

𝑝

4π𝑟
𝑝
3

θ=0

2π

∫ 𝑐𝑜𝑠θ + 3𝑅

𝑟
𝑝
2 𝑥

𝑝
𝑐𝑜𝑠θ2 + 𝑦

𝑝
𝑠𝑖𝑛θ𝑐𝑜𝑠θ( )( )𝑑θ

Notice that in equation 5.36 that the only term that has a non-zero value in integrate is the

term with . Integration from 0 to of𝑐𝑜𝑠θ2 2π 𝑐𝑜𝑠θ2

is and the magnetic field component in this caseπ
becomes

(5.36)𝐵
𝑥

≈
3µ

𝑜
𝑧

𝑝
𝑥

𝑝

4π𝑟
𝑝
5 𝐼 ·  π𝑅2( )

SImilarly, the y component of the magnetic field in
equation 4.30b becomes

(5.37)𝐵
𝑦

≈
3µ

𝑜
𝑧

𝑝
𝑦

𝑝

4π𝑟
𝑝
5  𝐼 · π𝑅2( )

For the x component, the integration in equation
4.30c can be expanded as Figure 5.8. Magnetic field observed

at a far distance is caused by a small
current loop.

(5.38)𝐵
𝑧

≈
µ

𝑜
𝐼 𝑅

4π𝑟
𝑝
3

θ=0

2π

∫ 1 + 3𝑅

𝑟
𝑝
2 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( )( ) 𝑅− 𝑥

𝑝
𝑐𝑜𝑠θ − 𝑦

𝑝
𝑠𝑖𝑛θ( )𝑑θ

Expanding the multiplication term to

𝑅 + 3𝑅

𝑟
𝑝
2 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( ) − 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( ) − 3𝑅

𝑟
𝑝
2 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( )2

=

𝑅 + 3𝑅

𝑟
𝑝
2 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( ) − 𝑥

𝑝
𝑐𝑜𝑠θ + 𝑦

𝑝
𝑠𝑖𝑛θ( ) − 3𝑅

𝑟
𝑝
2 𝑥

𝑝
𝑐𝑜𝑠θ( )2

+ 2𝑥
𝑝
𝑦

𝑝
𝑐𝑜𝑠θ𝑠𝑖𝑛θ + 𝑦

𝑝
𝑠𝑖𝑛θ( )2⎡

⎢
⎣

⎤
⎥
⎦

The expression above has one constant term, R, and two terms that have a squared cosine
and sine. We know that integration from 0 to of or gives us . Hence, the2π 𝑐𝑜𝑠θ2 𝑠𝑖𝑛θ2 π
integration in 5.38 gives us the following result

(5.39)𝐵
𝑧

≈
2µ

𝑜

4π𝑟
𝑝
3 𝐼 · π𝑅2( ) −

3µ
𝑜

𝑥
𝑝
2+𝑦

𝑝
2( )

4π𝑟
𝑝
5 𝐼 · π𝑅2( )

One can directly observe that for the term in parentheses in equations 5.36, 5.37 and 5.39
the expression is the area of the current loop and we can replace it with the symbol A.π𝑅2

Also, we know that . So, we can complete the term in the parentheses in𝑟
𝑝
2 = 𝑥

𝑝
2 + 𝑦

𝑝
2 + 𝑧

𝑝
2

the second term in equation 5.39 as

𝐵
𝑧

≈ 𝐼𝐴 ·
2µ

𝑜

4π𝑟
𝑝
3 − 𝐼𝐴 ·

3µ
𝑜

𝑥
𝑝
2+𝑦

𝑝
2+𝑧

𝑝
2−𝑧

𝑝
2( )

4π𝑟
𝑝
5 = 𝐼𝐴 ·

µ
𝑜

4π𝑟
𝑝
3 2 − 3 +

𝑧
𝑝
2

𝑟
𝑝
2( ) = 𝐼𝐴 ·

µ
𝑜

4π𝑟
𝑝
3

𝑧
𝑝
2

𝑟
𝑝
2 − 1( )

(5.40)
The magnetic field produced by the small loop is then
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(5.41)𝐵 = 𝐼𝐴 ·
µ

𝑜

4π𝑟
𝑝
3 ·

3𝑧
𝑝
𝑥

𝑝

𝑟
𝑝
2 ,

3𝑧
𝑝
𝑦

𝑝

𝑟
𝑝
2 ,

3𝑧
𝑝
𝑧

𝑝

𝑟
𝑝
2 − 1( )

Equation 5.41 can be written as a subtraction of two vectors

(5.42)𝐵 =
µ

𝑜

4π𝑟
𝑝
3 · 3𝐼𝐴

𝑧
𝑝

𝑟
𝑝

·
𝑥

𝑝

𝑟
𝑝

,
𝑦

𝑝

𝑟
𝑝

,
𝑧

𝑝

𝑟
𝑝

( ) − 𝐼𝐴𝑧⎡⎢⎢⎣

⎤⎥⎥⎦

In equation 5.42, we took as a common factor from the first parentheses.The term
𝑧

𝑝

𝑟
𝑝

remaining in the parentheses in 5.42 is the unit vector . For the loop defined in figure 5.8,𝑟
𝑝

the normal direction is along the z-axis or , . Hence, we can define a vector quantity𝑛 = 𝑧

(5.43)𝑚 = 𝐼𝐴𝑛

that is known as the magnetic moment and has units of A.m2. Using this definition we can

write the term as a dot product of  the momentum and the displacement unit vector,𝐼𝐴
𝑧

𝑝

𝑟
𝑝

. (5.44)𝑚 · 𝑟
𝑝

= 𝐼𝐴𝑧 ·
𝑥

𝑝

𝑟
𝑝

,
𝑦

𝑝

𝑟
𝑝

,
𝑧

𝑝

𝑟
𝑝

( ) = 𝐼𝐴
𝑧

𝑝

𝑟
𝑝

Hence we can now rewrite equation 5.42 as

(5.45)𝐵 =
µ

𝑜

4π𝑟
𝑝
3 · 3(𝑚 · 𝑟

𝑝
)𝑟

𝑝
− 𝑚⎡⎢⎣

⎤⎥⎦

Figure 5.9. (a) Magnetic field produced by a small current loop. (b) magnetic dipole
representation of the current loop.

We can now draw the magnetic field lines due to a small current loop with current flowing
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anti-clockwise as shown in figure 5.9a. The magnetic field lines in the figure gives us a great
remblence to that of the electric field produced by an electrical dipole (figure 3.5 in unit three)
formed by a positive and a negative charge. Similarly we can represent the current loop by
two poles. One pole is at the top from which the magnetic field lines are pointing outwards of
the loop. We call that pole north and give it a short letter N. The second pole is at the bottom
from which the lines are pointing inwards and we call it south or S for short. This
representation is illustrated in figure 5.9b and it is commonly referred to as a magnetic
dipole in analogy to the electrical dipole. In comparison, the electrical dipole moment is
defined as where is the displacement vector pointing from the negative to the𝑝 = 𝑞𝑙 𝑙
positive charge. However for the magnetic dipole, as we defined earlier, the magnetic
moment is defined as the vector that has an amplitude equals the current in the loop
multiplied by the loop area and a direction normal to the loop and following the right hand
rule, .𝑚 = 𝐼𝐴𝑛

Force on a current loop by an external magnetic field
Consider a rectangular current loop that is
placed in the way of a constant magnetic
field as shown in figure 5.10. For the
configuration in the figure, the magnetic
field is along the y direction. The magnetic
force applied on a charge element q that is
moving in the loop is . We can𝑑𝐹 = 𝑞𝑣 × 𝐵
write this in terms of current density as

(5.46)𝑑𝐹 = ρ
𝑙
𝑑𝑙 𝑣 × 𝐵

As defined earlier, the current in the loop is
. Hence, we can rewrite equation𝐼 = ρ

𝑙
𝑣

5.46 as

(5.47)𝑑𝐹 =  𝐼 × 𝐵𝑑𝑙

For the first vertical side, the current is
moving along the positive z-direction, hence

Figure 5.10. Magnetic force on a current
loop placed in a way of a constant magnetic
field.

(5.48)𝑑𝐹
1

=  𝐼𝑧 × 𝐵𝑦𝑑𝑧 =− 𝐼𝐵𝑑𝑧 𝑥

This gives a force on the charge element that is point towards the negative x-axis as shown
by the blue arrow in figure 5.10. The total force on the side is obtained by integrating over
the length of the wire. When both the current and the magnetic fields are constant, the
integration result is

(5.49)𝐹
1

=−
𝑧=0

𝑎

∫ 𝐼𝐵𝑑𝑧 𝑥 =− 𝐼𝐵𝑎𝑥 

Similarly the magnetic force over the other vertical side is
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(5.50)𝐹
3

= 𝐼𝐵𝑎𝑥 
For the top and lower sides, the current is moving in the x-y plane. Hence, we can break it
into two components: . The cross product term becomes𝐼 = 𝐼

𝑥
𝑥 + 𝐼

𝑦
𝑦 𝐼 × 𝐵

(5.51)𝐼
𝑥
𝑥 + 𝐼

𝑦
𝑦( ) × 𝐵𝑦 = 𝐼

𝑥
𝐵𝑧

The force on the upper side is pointing upwards along the z-direction. Similarly, the force on
the lower side is pointing downwards.

Motion of the current loop under a constant field
The force on the upper and lower sides of the loop cancel each other and there should be no
effect along the z axis. However, this is not the case for the vertical sides. The force on the
right side in figure 5.10 is pushing it towards the negative x direction, while that on the left
side is pulling it in the opposite direction. This will cause a rotation motion around the loop
axis. As the loop rotates, the force component along the rotational direction, , reduces andθ
it reaches zero when the loop is aligned along the x axis as illustrated in figure 5.11.

Figure 5.11. Motion of a current loop under a constant magnetic field in the y direction.

After that point, the force starts to resist the motion and the loop stops when it completes
180 degrees of rotation as shown by the right most diagram in figure 5.11. After this, the loop
will switch direction and rotate in the opposite way stopping after 180 degrees and starts
repeating the original cycle again. To find a mathematical representation of the motion, let us
examine the rotation path at an intermediate time step as shown in figure 5.12. We know
that the force on the right side is . However, only the component along𝐹 =− 𝐼𝐵𝑎𝑥 θ
contributes to the rotational movement. The amplitude of this force is the projection of the
force along the direction. From the geometry in figure 5.11, we can detect thatθ

. Hence, the projection isθ =− 𝑐𝑜𝑠θ 𝑥 − 𝑠𝑖𝑛θ 𝑦

(5.50)𝐹
θ

= 𝐹 · θ| | = 𝐼𝐵𝑎 𝑐𝑜𝑠θ

If we assume that the side has a mass M, then from Newton’s second law of motion we can
detect that acceleration in the direction isθ

________________________________________________________________________
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(5.51)
𝑑𝑣

θ

𝑑𝑡 = 𝐹
θ
/𝑚 = 𝐼𝐵𝑎 𝑐𝑜𝑠θ/𝑀

Where is the rotational speed. Let us𝑣
θ

consider that during an infinitesimal time dt
the loop rotated by an angle . During the𝑑θ
time, the side moves a distance 𝑑𝑙 = 𝑣

θ
𝑑𝑡

along the rotational path. We also know
from the geometry that .Hence we𝑑𝑙 = 𝑅𝑑θ
can write that

(5.52)𝑑θ/𝑑𝑡 = 𝑣
ϑ
/𝑅

Applying this relation we can deduce the
following relation

(5.53)
𝑑𝑣

θ

𝑑𝑡 =
𝑑𝑣

θ

𝑑θ . 𝑑θ
𝑑𝑡 = 𝑣

ϑ
/𝑅

𝑑𝑣
θ

𝑑θ
Figure 5.11. The path of the rotational
movement of the current loop under a
constant magnetic field.

We can use the relation in 5.53 in 5.51 as follows

(5.54)𝑣
ϑ
/𝑅

𝑑𝑣
θ

𝑑θ = 𝐼𝐵𝑎 𝑐𝑜𝑠θ/𝑀 → 𝑣
ϑ
𝑑𝑣

ϑ
= 𝐼𝐵𝑅𝑎 𝑐𝑜𝑠θ/𝑀 𝑑θ

Performing integration over both sides we obtain

(5.55)1
2 𝑣

θ

2
= 𝐼𝐵𝑅𝑎 𝑠𝑖𝑛θ/𝑀 → 𝑣

ϑ
= 2𝐼𝐵𝑅𝑎 𝑠𝑖𝑛θ/𝑀

From the geometry in figure 5.11 we know that , where is the width of the loop.2𝑅 = 𝑏 𝑏
Hence,

(5.56)𝑣
ϑ

= 𝐵 𝐼𝑎𝑏  𝑠𝑖𝑛θ/𝑀

The area of the loop and the product is the magnitude of the magnetic moment of𝐴 = 𝑎𝑏 𝐼𝐴
the current loop.

(5.57)𝑣
ϑ

= 𝐵 𝑚  𝑠𝑖𝑛θ/𝑀

The maximum speed of rotation is and it is achieved when the loop turns by𝑣
θ,𝑚𝑎𝑥

= 𝐵𝑚/𝑀
90o. The speed vanishes when the loop completes 180 degrees then starts rotating the
opposite direction.

Torque on current loop
When considering a rotational movement, one important parameter is the torque. It
represents the twist that causes the rotation. It can be written as the cross product of the
force and the arm of rotation. In the geometry in figure 5.11, we can write the torque asτ

(5.58)τ = 𝐹 × 𝑅 =− 𝐼𝐵𝑎 𝑥 × 𝑅
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The arm vector is

(5.59)𝑅 = 𝑏
2 − 𝑠𝑖𝑛θ 𝑥 + 𝑐𝑜𝑠θ 𝑦( )

The torque is then

(5.60)τ =− 1
2 𝐼𝐵𝑎𝑏 𝑐𝑜𝑠θ 𝑧 =− 𝐵 𝑚 𝑐𝑜𝑠θ 𝑧

The toque is pointing along the negative z axis which is the axis of rotation.

One point to mention here is that in the motion we presented before, the loop was rotating
back and forth. If however, we wish to make the loop continue rotating in the same direction,
the current direction needs to flip right after the loop makes 180 degrees rotation. This can
be achieved using a brush system as shown in figure 5.12. There, the two brushes are
touching the wires, hence once the loop completes 180 degrees, the wires will switch the
brush and the current direction return similar to the 0 degrees forcing the loop to continue
rotating in the same direction.

Each end of the loop wire is connected to a
commutator ( a curved conducting surface )
that is in touch with a conducting brush. The
current is flowing in one direction. The gap
between the commutators allows wire ends
to switch the current directions when the
loop completes 180 degrees of rotation.
That allows the loop to continue rotating in
the same direction. That is the main
concept behind DC motors operation.

Figure 5.12. Adding conductor brushes to
force the current loop to rotate along one
direction.
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