

BANG

INTRODUCTION TO OPTICS

Lecture 1: Introduction

Dr. Waleed S. Mohammed

Introduction

- Light can be described as:
 - Particles (called photons) that carry energy from one place to the other. That is how we feel the heat of the sun.
 - A wave (Electromagnetic wave) that propagates from one place to another. That is how we see a light from far distances.

Light as a wave

BU-CR

BANGKOK

Open Courses

- As a wave, light oscillates in space with a certain period, λ.
- λ is referred to as the wavelength.
- Lights also oscillates in time with a certain frequency, v

Light as a wave

• The wavelength of a light wave and its frequency are linked through the speed of light.

 $v = c / \lambda$

• The frequency of light defines its **color**

Color	Frequency (Hz)	Wavelength in vacuum (nm)
Red	4.615×10 ¹⁴	650
Orange	5.084×10 ¹⁴	590
Yellow	5.263×10 ¹⁴	570
Green	5.882×10 ¹⁴	510
Blue	6.315×10 ¹⁴	475
Violet	7.500×10 ¹⁴	400

Light and color

Light and color

- Our eyes are sensitive to light with wavelength in the range between 400-700 nm (violet - red)
- This is referred to as "visible light."
- Wavelengths higher than red are referred to as "Infrared" or in short IR.
- Wavelengths shorter than Violet are referred to
- "ultra-violet" or in short UV.

Phase of the light wave

Open Courses

 Light oscillation (in time and space) changes the phase of the wave.

BU-CR*C

- Oscillation in space is propagation.
- When light travels a distance r over a time t, it gains a phase φ.

Phase of the light wave

BU-CR CCS Open Courses

- The term k is referred to as the wave-number, or the number of changes of the phase by 2π over a unit distance.
- The term ω is referred to as the angular frequency, or the number of changes of the phase by 2π over a unit time.

$$\omega = 2\pi v$$
 and $k = \frac{2\pi}{\lambda}$

Exercise 1

• Write the colors in the table above in terms of angular frequencies and wave-numbers.

- What is the distance needed to make a blue light gain a phase of 800π

The wave-number

BU-

Open Courses

- K is the number of 2π changes of the phase per unit length along the direction of propagation.
- To include the direction of propagation, wave-vector is introduced

$$\bar{k} = k\hat{a}_r$$
, where $\hat{a}_r = (a_x, a_y, a_z)$ and $|\hat{a}_r| = 1$
 $k_x = ka_x$, $k_y = ka_y$, $k_z = ka_z$ and $k = \frac{2\pi}{\lambda}$

Wave representation

Open Courses

- When representing a wave, lines at the locations of the peaks are drawn normal to
- the direction of propagation.

BANGKOK

BU-C

 The space between the lines correspond to 2π phase change.

Plane wave

BU-G

BANGKOK

 If the peak locations across the space are aligned in planes, the wave is referred to as "plane-wave."

Open Courses

 For plane-wave, the surface of equal phase is a plane.

Plane wave

- The phase of the wave changes uniformly in a plane normal to the direction of propagation.
- The phase can be written as

$$\phi = \omega t - \vec{k}.\vec{r}$$

 As the wave amplitude has a sinusoidal nature, a plane wave can be generally written as

$$E(r,t) = A \exp\left[j\left(\omega t - \vec{k}.\vec{r}\right)\right]$$

• A is the amplitude and E is the electric field.

Exercise 2

 Write the phase of a green light plane wave propagating in the x-y plane with an angle 30° to the x axis.

 Write the equation for a violet light plane wave with an amplitude 0.9 (V/m) and angles of 45° to the x-z plane and 600 to the y axis

Cylindrical wave

BU-CR

BANGKOK

Open Courses

- If the surfaces of constant phase are cylinders, then the wave is referred to as "Cylindrical wave."
- The phase in this case is written as

$$\phi = \omega t - \sqrt{k_x^2 + k_z^2} \rho - k_y y$$
$$\rho = \sqrt{x^2 + z^2}$$

Cylindrical wave

The cylindrical wave function can be approximately written as

$$E_{cyl}(r,t) \approx \frac{A}{\sqrt{\rho}} \exp\left[j\left(\omega t - \sqrt{k_x^2 + k_z^2}\rho\right)\right] \exp\left[-jk_z z\right]$$

- This solution is an approximation of the Hankle
- function for large values of ρ.

Spherical wave

BANGKOK

BU-

Open Courses

- When the surfaces of equal phases are spheres, the wave is referred to as "spherical-wave."
- The phase in this case is written as

$$\phi = \omega t - \sqrt{k_x^2 + k_y^2 + k_z^2} r$$
$$r = \sqrt{x^2 + y^2 + z^2}$$
or in short $\phi = \omega t - kr$

Spherical wave

BU-CR

- Spherical wave represents light emitting from a very small source (point-source.)
- The wave function can be written as

Courses

$$E_{sph}(r,t) = \frac{A}{r} \exp[j(\omega t - kr)]$$

For a point source located at location r_o

$$E_{sph}(r,t) = \frac{A}{r} \exp[j(\omega t - k(r - r_o))]$$

Exercise 3

Write the wave function of red light cylindrical Wave

Write the wave function of a yellow light spherical wave

Exercise 4

• For the following spherical wave, what is the light color and where is the point source located?

$$E_{sph}(r,t) = \frac{A}{r} \exp\left[j\left(3.19 \times 10^{15} t - 1.065 \times 10^{7} r - 21.3\right)\right)\right]$$